Extensions 1→N→G→Q→1 with N=Q16 and Q=C22

Direct product G=N×Q with N=Q16 and Q=C22
dρLabelID
C22×Q1664C2^2xQ1664,252

Semidirect products G=N:Q with N=Q16 and Q=C22
extensionφ:Q→Out NdρLabelID
Q161C22 = C2×SD32φ: C22/C2C2 ⊆ Out Q1632Q16:1C2^264,187
Q162C22 = C16⋊C22φ: C22/C2C2 ⊆ Out Q16164+Q16:2C2^264,190
Q163C22 = C2×C8.C22φ: C22/C2C2 ⊆ Out Q1632Q16:3C2^264,255
Q164C22 = D8⋊C22φ: C22/C2C2 ⊆ Out Q16164Q16:4C2^264,256
Q165C22 = D4○SD16φ: C22/C2C2 ⊆ Out Q16164Q16:5C2^264,258
Q166C22 = C2×C4○D8φ: trivial image32Q16:6C2^264,253
Q167C22 = D4○D8φ: trivial image164+Q16:7C2^264,257

Non-split extensions G=N.Q with N=Q16 and Q=C22
extensionφ:Q→Out NdρLabelID
Q16.1C22 = C2×Q32φ: C22/C2C2 ⊆ Out Q1664Q16.1C2^264,188
Q16.2C22 = C4○D16φ: C22/C2C2 ⊆ Out Q16322Q16.2C2^264,189
Q16.3C22 = Q32⋊C2φ: C22/C2C2 ⊆ Out Q16324-Q16.3C2^264,191
Q16.4C22 = Q8○D8φ: trivial image324-Q16.4C2^264,259

׿
×
𝔽